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Machine Learning Becoming Dominant

m Recent advances in image recognition, natural language processing,
planning, knowledge base construction are driven by machine learning

m Society-scale impact: autonomous vehicles, personalized medicine,
personalized recommendations

m Developing high-quality ML applications is challenging

m Requires deep ML knowledge, custom toolsand high-performance computing
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The DAWN Proposal

m What if anyone with domain expertise could build their own
production-quality ML products?

m Without a PhD in machine learning
m Without being an expertin DB + systems

m Without understandingthe latest hardware
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Unstructured Dark Data

Scientific articles &
® government reports

Valuable & hard to process



Dark Data Extraction (DDE)

Dark Data: Text, Tables, Structured Data: Enables
Images, Diagrams, etc. analyses, interfaces, etc.

A critical and ditficult step in many data analysis pipelines
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Extraction from the Scientific Literature

Scientific data accessible, but not readable

* What is the impact of human genetic
variation on drug responses”

« What drugs may have unsafe
reaction with which gut bacteria®?




Dark Data Helps with Societal Problems m

Anti-human
DARPA M E M EX Trafficking

2016 Presidential
Award for
Extraordinary Efforts to
Combat Traffickingin
Persons

100M sex ads read with
human-caliber quality

— Child predators & human
traffickers arrested in multiple
jurisdictions across the US

the WHITE HOUSE PRESIDENT BARACK OBAMA




Dark Data Extraction: Beyond Text!

« Example: Tumor grade & stage classification from
histopathology slides (Nature Comm., Hsing-Yu et. al.)

Pathloy Ima

Pathology Reports

Text Extractions
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Images + patient data

outperform expert
pathologists at prognosis




Dark data can help improve science,
business, and society

Biodiversity Drug Response  Lung Cancer Prognosis

«dD DeepDive

http://deepdive.stanford.edu/
http://lattice.io/

oAra MEMEX

Fight against human trafficking




Data Programming Pipeline in Snorkel

Input: Labeling Functions Generative Model Noise-Aware
Discriminative Model SHOTI(EI

o= o{0]g =

Trained Model

DOMAIN
EXPERT

Users write scripts to We model this We use this to train
label training data process to denoise it e.g. a deep
learning model!




From EE Times — September 27, 2016

”Today the job of training machine learning models
is limited by compute, if we had faster processors
we’d run bigger models...in practice we train on a
reasonable subset of data that can finish in a matter
of months. We could use improvements of several
orders of magnitude — 100x or greater.”

Greg Diamos, Senior Researcher, SVAIL, Baidu



DAWN Goals

m Speed up machine learning by 100x

m 1000x improvement in performance/watt

m Enable real-time and interactive ML on big data

m Data center
m Mobile

m Full stack approach:
1. Algorithms
2. Programming Languages and Compilers
3. Hardware



Moore’s law: The Good Old Days
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Moore’s Law Today = More Cores

Sequential Performance Plateau

Moore’s Law
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Single-Thread
Performance
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Machine Learning Computational Model

m Underlying model for modern applications

m New computational model
m Old: Classical deterministic computations with algorithms
m New: Probabilistic machine-learned models from data

m Statistical correctness creates many opportunities for improved
parallel performance



Everything You Learned About Parallel
Computing is Wrong for Machine Learning!



A Crash Course in Parallel Computing



Multicore: No Data Sharing Case

10703846725-30

88-/¥87600- TNV

Job 1

O

88-/¥87600- TNV

o
S
Ye)
o
N~
O
<
o]
o™
=)
N~
o
—

Job 2

D

Job 3

Jobs with little data sharing, 2
cores execute twice as fast!

O

Job 4



Multicore: Shared Data Case
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Locking Overhead Scales Quadratically

Suppose it takes 1 second to synchronize
with 2 cores

4 cores takes 4 seconds
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SGD: The Key Algorithm in Machine Learning

The core algorithm of modern learning is
called Stochastic Gradient Descent

(SGD)
%%%% SGD consists of
I BILLIONS of tiny jobs that

share a single data stucture!

Implemented in a classical way (locking)
SGD actually gets slower with more cores

So what can we do?



Multicore: Hogwild! Case
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How do we run SGD in Parallel?

Just ignore the locking protocol...
As we say, go Hogwild!

This is computer science
heresy!

Theorem (roughly, NIPS11): If we
do no locking, SGD converges to

correct answer—at essentially the
same rate!



Cortana: Microsoft’s Digital Assistant

W I [E1E[]

Al breakthrough: Microsoft’s ‘Project Adam’ identifies
dog breeds, points to future of machine learning

All web companies have
similar: image rec, voice,
mobile, search, etc.

"...using a technology
called, of all things,
Hogwild!”

http://www.wired.com/2014/07/microsoft-adam/
http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-d og-breeds/



Single Instruction Multiple Data (SIMD)

m Like vector processing
m Single instruction can process multiple values at once

X1 | X | V1 | = X1
Xop | X | Y2 | = X2)2
X3 | X | Y3 | = X3)3
Xg | X | Va | = Xy4)a

one vmulpd
instruction

m Source of parallelism independent of multicore



Low Precision and SIMD Parallelism

m Major benefit of low-precision: use SIMD instructions to get
more parallelism on CPU

SIMD Precision SIMD Parallelism

64-bit float vector 4 multiplieS/CyCle

(vmulpd instruction)

8 multiplies/cycle

(vmulpsinstruction)

16 multiplies/cycle

(vpmaddwd instruction)

S-bit int vector . 32 multiplies/cycle
JUREALARDAnanumn L mIAnaangh nl S il




The Buckwild! Strategy

m Use 8- or 16-bit fixed point numbers for computing
SGD rather than 32-bit floating point

m Fewer bits of data = better use of SIMD = higher performance

m Fewer bits of data = same convergence behavior with SGD

Theory: [De Sa, Zhang, Olukotun, Ré: NIPS 2015]



Buckwild!
Statistical vs. Hardware Efficiency

Same statistical efficiency Improved hardware
efficiency

10

e 8-bit gives about 3x speed up!

* Lower precisionis possible

 Good match to
# Iterations specialized/reconfigurable HW?

Logistic Regression using SGD

BuckwiLD! has same statistical efficiency with
greater hardware efficiency



Low Precision for Convolutional Neural Network

Test Error on LeNet

60 ==MNIST —
-=-CIFAR10

2 4 6 8 10 12 14 16

We can go down below 8-bits of precision without
sacrificing accuracy



Relax, It’s Only Machine Learning

m Relax locking: data races are better
m HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

m Relax precision: small integers are better
m BuckWild! [De Sa, Zhang, Olukotun, Ré: NIPS 2015]

m Relax cache coherence: incoherence is better
m [De Sa, Feldman, Ré, Olukotun:ISCA 2017]

Better hardware efficiency
with negligible impact on statistical efficiency



End of Dennard Scaling = End of Multicore
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Power and Performance

Energy Performance
efficiency
Joules Ops
Power = X P
second

1 1

Specialized accelerators improve energy efficiency



FPGA Based Accelerators

m Increasing interest in use of FPGAs as application
accelerators in data centers

Key advantage: Performance/Watt

020 = )
Microsoft: B3PEE intel)
> Bing o zon [ANATERYA

webservices now part of Intel




FPGA Problems: Programmability and Design

m Verilog and VHDL poor match for software developers
m High quality designs, but low productivity

m High level synthesis (HLS) tools with C interface
s Medium/low quality designs
m Need hardware knowledge to build good accelerators

m FPGA design space grows exponentially with the number of parameters
m Even relatively small designs can have very large spaces
m Manual exploration is tedious, usually results in suboptimal designs



DSLs, Parallel Patterns and Delite

. . g TensorFlow
Domain Specific Languages - m
. Parallel data Analyses
Delite T 17177 Parallel &f) &
DbsL. | | 7/ patterns Transformations

Framework

Heterogeneous
Hardware




Parallel Patterns to Hardware

Helps Productivity Parallel Patterns
Pattern Transformations

Tiling

g—

Improves Data Locality
Tiled Parallel Patterns

Hardware Generation
Metapipeline Analysis

Exploits Nested Parallelism

Delite , .
Captures Design Space Spatial

Design Space Exploration
Latency, Area Estimation

Search Design Space

Chisel
Generates Ver”Og’ bitstream Bitstream Generation

(_FPGA Configuration )




Spatial Performance vs. HLS

Spatial:

Benchmark Designs Search Time
Dot Product 5,426 5.3 ms / design
Outer Product 1,702 30 ms / design
TPCHQ6 =—tae 9.2 ms / design

, :

Blackscholes 6500)( Speedup Over HLS| 7 ms / design
Matrix Multiply .1 ms / design
K-Means 75,200 20 ms / design
GDA 42,800 17 ms / design

Vivado HLS:

Designs Search Time

GDA 250 1.85 min / design




Generated k-means Hardware

points
Double buffer
. points
points Double buffer
Tile +
Load
centroids 7
A . minldx Pipe 3 — Sum
uffor Pipe 1 Double buffer
centroids J
Tile L, Vector Scalar (Min Pipe 4 — Count
Load Dist — —  Dist  — ot i)
~ (Norm) (Tree +) Inc
Pipe 0 Pipe 2 — MinDistWithindex Calculation |7

sum
Buffer
new cenfroids
Double buffer
new
centroids
I Tile
> Store
Pipe 5 — Avg. Pipe 6
count
Buffer

Metapipeline A (Pipe 1-4) — assign points to clusters and sum points

m High quality hardware design
m Hardware similar to Hussain et al. Adapt. HW & Syst. 2011

“FPGA implementation of k-means algorithm for bioinformatics application”

Implements a fixed number of clusters and a small input dataset

Metapipeline B (Pipe 5-6) —
average points

m Tiling analysis automatically generates buffers and tile load units to handle arbitrarily sized data

m Parallelizes across centroids and vectorizes the point distance calculations



Energy Efficiency vs. Programmability
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Specialized ML hardware that
provides programmability of CPUs and
energy efficiency of ASICs



Software Defined Hardware (SDH)

m All(Just) the advantages of conventional accelerators
m Flexibility of FPGAs

m Programmability of GPUs
m Efficiency of ASICs

m SDH Goals

m 100x performance/Watt vs. CPU
m 10x performance/Watt vs. FPGAs/GPUs

m 1000x programmability vs. FPGAs



Plasticine: A SDH Architecture

Plasticine: A Reconfigurable Architecture for Parallel Patterns, ISCA 2017

-

S

S

Token out

v

PCU: Pattern Compute Unit
PMU: Pattern Memory Unit
Dl: DRAM Interface

S:  Switch




Software Defined Hardware

10000 : :
| | Dedicated

= 1000 SDH i

£ |

& :

S 100 : |
> CPUs |
C I
2 |
o i

> - - - - :

] : I

o 1 : :

¢ CPU : :

more : less : not
0.1 programmable i programmable i programmable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chip Number



We Can Have It All!

Performance

Power

Programmability

Portability

ML Applications (DeepDive, Snorkel)
Algorithms (Hogwild!, Buckwild!)

App @oper

High Performance DSLs
(Tensorflow, OptiML ...)

High Level @oiler (Delite)

Accelerators
(GPU, FPGA, SDH)



