
Scaling Machine Learning with 
Moore’s Law

Kunle	Olukotun
Stanford	University

EE	and	CS



Machine Learning Becoming Dominant

n Recent	advances	in	image	recognition,	natural	language	processing,	
planning,	knowledge	base	construction		are	driven	by	machine	learning

n Society-scale	impact:	autonomous	vehicles,	personalized	medicine,	
personalized	recommendations

n Developing	high-quality	ML	applications	is	challenging
n Requires	deep	ML	knowledge,	custom	tools	and		high-performance	computing
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The DAWN Proposal

n What	if	anyonewith	domain	expertise	could	build	their	own	
production-quality	ML	products?

n Without	a	PhD	in	machine	learning

n Without	being	an	expert	in	DB	+	systems

n Without	understanding	the	latest	hardware



Unstructured Dark Data

Data easy to process by machines

Scientific articles & 
government reports

Medical Images

Valuable & hard to process

Structured Data

Video



Dark Data Extraction (DDE)

Dark	Data:	Text,	Tables,	
Images,	Diagrams,	etc.

Structured	Data:	Enables	
analyses,	interfaces,	etc.

A critical and difficult step in many data analysis pipelines



Dark Data System

Human-caliber quality
with machine-caliber scale



Extraction from the Scientific Literature

Scientific data accessible, but not readable

• What is the impact of human genetic 
variation on drug responses?

• What drugs may have unsafe 
reaction with which gut bacteria?

Emily	MalloryRuss	Altman



Dark Data Helps with Societal Problems

100M sex ads read with 
human-caliber quality

– Child predators & human 
traffickers arrested in multiple 
jurisdictions across the US

2016 Presidential 
Award for 
Extraordinary Efforts to 
Combat Trafficking in 
Persons

Anti-human	
Trafficking



Dark Data Extraction: Beyond Text!

• Example: Tumor grade & stage classification from 
histopathology slides (Nature Comm., Hsing-Yu et. al.)
Pathlogy Images

Pathology	 Reports
A.
Histologic 
type: 

Adenocarcinoma
Histologic 
grade: 
Moderately

differentiated  
... ...

Visual	Features

Text	Extractions
A.
Histologic 
type: 

Adenocarcinoma
Histologic 
grade: 
Moderately

differentiated  
... ...

Probability	of	
Survival

Cleanly	separated

Images + patient data 
outperform expert 

pathologists at prognosis



Dark data can help improve science, 
business, and society

Lung Cancer PrognosisDrug ResponseBiodiversity

Fight against human trafficking http://deepdive.stanford.edu/
http://lattice.io/



Data Programming Pipeline in Snorkel

DOMAIN	
EXPERT

Input:	Labeling	Functions

def lf1(x):
cid = (x.chemical_id, 

x.disease_id)
return 1 if cid in KB else 0

def lf2(x):
m = re.search(r’.*cause.*’, 

x.between)
return 1 if m else 0

def lf3(x):
m = re.search(r’.*not 

cause.*’, x.between)
return 1 if m else 0

Users write scripts to 
label training data 

L1,1

L1,2

L1,3

y1

Generative	Model

We model this 
process to denoise it

Noise-Aware	
Discriminative	Model

We use this to train 
e.g. a deep 

learning model!

Output:	
Trained	Model

x1,1

x1,2

h1,3

h1,1

h1,2y1



From EE Times – September 27, 2016 
”Today the job of training machine learning models 
is limited by compute, if we had faster processors 
we’d run bigger models...in practice we train on a 
reasonable subset of data that can finish in a matter 
of months. We could use improvements of several 
orders of magnitude – 100x or greater.” 

Greg Diamos, Senior Researcher, SVAIL, Baidu



DAWN Goals

n Speed	up	machine	learning	by	100x
n 1000x	improvement	in	performance/watt

n Enable	real-time	and	interactive	ML	on	big	data
n Data	center
n Mobile

n Full	stack	approach:																	
1. Algorithms
2. Programming	Languages	and	Compilers	
3. Hardware



Moore’s law: The Good Old Days

More transistors… used to mean faster!



Moore’s Law Today ⇒ More Cores
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Machine Learning Computational Model

n Underlying	model	for	modern	applications

n New	computational	model
n Old:	Classical	deterministic	computations	with	algorithms
n New:	Probabilistic	machine-learned	models from	data

n Statistical	correctness	creates	many	opportunities	for	improved	
parallel	performance



Everything	You	Learned	About	Parallel	
Computing	is	Wrong	for	Machine	Learning!



A	Crash	Course	in	Parallel	Computing



Multicore: No Data Sharing Case

Jobs with little data sharing, 2 
cores execute twice as fast!

Job 1

Job 2

Job 3

Job 4



Multicore: Shared Data Case

Protocol for “whose turn,” called 
locking, takes 100s of CPU clock 

cycles

Job 1

Job 2

Job 3

Job 4

Is it my 
turn?



Locking Overhead Scales Quadratically

Suppose it takes 1 second to synchronize 
with 2 cores

4 cores takes 4 seconds

Server may have 
100+ cores

8 cores takes 
16 seconds

k cores takes 
(k/2)2 seconds



SGD: The Key Algorithm in Machine Learning

SGD consists of 
BILLIONS of tiny jobs that 
share a single data stucture! 

The core algorithm of modern learning is 
called Stochastic Gradient Descent 

(SGD) 

Implemented in a classical way (locking) 
SGD actually gets slower with more cores

So what can we do?



Multicore: Hogwild! Case

Ignore the locks!

Job 1

Job 2

Job 3

Job 4

Is it my 
turn? Yes!



How do we run SGD in Parallel?

Theorem (roughly, NIPS11): If we 
do no locking, SGD converges to 
correct answer—at essentially the 
same rate! 

Just ignore the locking protocol… 
As we say, go Hogwild!

This is computer science 
heresy!



Cortana: Microsoft’s Digital Assistant

http://www.wired.com/2014/07/microsoft-adam/

“…using a technology 
called, of all things, 

Hogwild!”

http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-dog-breeds/

All web companies have 
similar: image rec, voice, 
mobile, search, etc.



Single Instruction Multiple Data (SIMD)

n Like	vector	processing
n Single	instruction	can	process	multiple	values	at	once

n Source	of	parallelism	independent	of	multicore
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Low Precision and SIMD Parallelism

n Major	benefit	of	low-precision:	use	SIMD	instructions	to	get	
more	parallelism	on	CPU

SIMD Precision

32-bit float vector
F32 F32 F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

SIMD Parallelism

8 multiplies/cycle
(vmulps instruction)

16 multiplies/cycle
(vpmaddwd instruction)

32 multiplies/cycle
(vpmaddubsw instruction)

64-bit float vector
F64 F64 F64 F64

4 multiplies/cycle
(vmulpd instruction)



The Buckwild! Strategy

n Use	8- or	16-bit	fixed	point	numbers	for	computing	
SGD	rather	than	32-bit	floating	point
n Fewer	bits	of	data	à better	use	of	SIMD	à higher	performance

n Fewer	bits	of	data	à same	convergence	behavior	with	SGD

n Theory:	[De	Sa,	Zhang,	Olukotun,	Ré:	NIPS	2015]



Buckwild! 
Statistical vs. Hardware Efficiency

Same	statistical	efficiency Improved	hardware	
efficiency

• 8-bit	gives	about	3x speed	up!

• Lower	precision	is	possible

• Good	match	to	
specialized/reconfigurable	HW?

BUCKWILD! has	same	statistical	efficiency	with
greater	hardware	efficiency
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Logistic	Regression	using	SGD	



Low Precision for Convolutional Neural Network
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We	can	go	down	below	8-bits	of	precision	without	
sacrificing	accuracy



Relax, It’s Only Machine Learning

n Relax	locking:	data	races	are	better
n HogWild!	[De	Sa,	Olukotun,	Ré:	ICML	2016,	ICML	Best	Paper]

n Relax	precision:	small	integers	are	better
n BuckWild! [De	Sa,	Zhang,	Olukotun,	Ré:	NIPS	2015]	

n Relax	cache	coherence:	 incoherence	is	better
n [De	Sa,	Feldman,	Ré,	Olukotun:	ISCA	2017]

Better	hardware	efficiency
with	negligible	impact	on	statistical	efficiency



End of Dennard Scaling
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Moore’s	Law

Power	Wall

Sequential	performance
plateau

Power 
Limit

Active Cores

165 W 53/96
180 W 58/96
200 W 64/96

11 nm process in 2022
96 cores @ 4.9 GHz ⇒ 300W

Dark Silicon

⇒ End of Multicore



Power and Performance

Power = Joules
Op

×
Ops
second

FIXED

Energy
efficiency

Performance

Specialized	accelerators	improve	energy	efficiency



FPGA Based Accelerators

n Increasing interest in use of FPGAs as application 
accelerators in data centers 

Key advantage: Performance/Watt



FPGA Problems: Programmability and Design 

n Verilog	and	VHDL	poor	match	for	software	developers
n High	quality	designs,	but	low	productivity

n High	level	synthesis	(HLS)	tools	with	C	interface
n Medium/low	quality	designs
n Need	hardware	knowledge	to	build	good	accelerators

n FPGA	design	space	grows	exponentially	with	the	number	of	parameters
n Even	relatively	small	designs	can	have	very	large	spaces
n Manual	exploration	is	tedious,	usually	results	in	suboptimal	designs



Delite
DSL 

Framework

DSLs, Parallel Patterns and Delite

OptiML
Domain Specific Languages

Heterogeneous
Hardware

Multicore GPU FPGACluster

Parallel data
Parallel 
patterns

Analyses
&	

Transformations

TensorFlow Weld



Parallel Patterns to Hardware

Helps	Productivity

Improves	Data	Locality

Exploits	Nested	Parallelism

Generates	 Verilog,	bitstream

Delite

Pattern	Transformations
Tiling

Parallel	Patterns

Tiled	Parallel	Patterns

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Metapipeline	Analysis

Chisel

Spatial
Design	Space	Exploration
Latency,	Area	Estimation

Captures	Design	Space

Search	Design	Space



Benchmark Designs Search Time
Dot	Product 5,426 5.3	ms	/	design
Outer Product 1,702 30	ms	/	design
TPCHQ6 5,426 8.2	ms /	design
Blackscholes 572 27	ms /	design
MatrixMultiply 70,740 11	ms /	design
K-Means 75,200 20	ms	/	design
GDA 42,800 17	ms	/ design

Designs Search Time
GDA 250 1.85	min	/	design

Vivado HLS:

6500x Speedup Over HLS!

Spatial:

Spatial Performance vs. HLS



Generated k-means Hardware

n High	quality	hardware	design
n Hardware	similar	to	Hussain et	al.	Adapt.	HW	&	Syst.	2011

n “FPGA	implementation	of	k-means	algorithm	for	bioinformatics	application”
n Implements	a	fixed	number	of	clusters	and	a	small	input	dataset	

n Tiling	analysis	automatically	generates	buffers	and	tile	load	units	 to	handle	arbitrarily	sized	data
n Parallelizes	across	centroids	and	vectorizes the	point	distance	calculations



Energy Efficiency  vs. Programmability
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Specialized	ML	hardware	that	
provides	programmability	of	CPUs	and	
energy	efficiency	of	ASICs



Software Defined Hardware (SDH)

n All(Just)	the	advantages	of	conventional	accelerators
n Flexibility	of	FPGAs
n Programmability	of	GPUs
n Efficiency	of	ASICs

n SDH	Goals
n 100x	performance/Watt		vs.	CPU
n 10x	performance/Watt		vs.	FPGAs/GPUs
n 1000x	programmability	vs.	FPGAs



Plasticine: A SDH Architecture

PCU:	Pattern	Compute	Unit
PMU:	Pattern	Memory	Unit
DI:		DRAM	Interface
S:				Switch
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Plasticine:	A	Reconfigurable	Architecture	for	Parallel	Patterns,	ISCA	2017



Software Defined Hardware

CPUs
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We Can Have It All!

n Performance

n Power

n Programmability

n Portability Accelerators
(GPU, FPGA, SDH)

High Performance DSLs
(Tensorflow, OptiML …)

High Level Compiler (Delite)

ML Applications (DeepDive, Snorkel)
Algorithms (Hogwild!, Buckwild!)

App Developer


