Machine Learning 3 Trends That Matter and 10 That Don't

Glen Anderson Discussion topics

Quick backgrounder on Glen

- VLSI designer 1990-1994 (Sun UltraSPARC V9 64-bit MMU)
- Electronic Design Automation companies 1994-2000
 - Ambit with Rajeev
- Some angel investing, VC advising, consulting 2000-2006
- Google 2006-present
 - 7 years in Platforms Networking (cluster fabrics, congestion)
 - 4 years in Machine Learning (Sibyl, then Brain team)
- Cryptocurrencies
- Glen's proposed "Rule of Mom" for angel investing
 - Cafepress, InBrace

Basics

Regression, classification, sequence, clustering, generative, RL

Dense vs. sparse (categorical) inputs

Supervised vs. unsupervised

Classification

https://aiexperiments.withgoogle.com/

Representations

https://aiexperiments.withgoogle.com/visualizing-high-dimensional-space

http://projector.tensorflow.org/

Understanding how

http://playground.tensorflow.org

Deeper and deeper (for image/video)

GoogLeNet model architecture

Combined visual and semantic embeddings

Nearest Images

- day + night =

- flying + sailing =

- bowl + box =

- box + bowl =

(Kiros, Salakhutdinov, Zemel, TACL 2015)

Nearest images

- dog + cat =

- cat + dog =

- plane + bird =

- man + woman =

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick on a ramp.

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

Show and Tell: A Neural Image Caption Generator, O Vinyals (2014)

Attentional models

A woman is throwing a **frisbee** in a park.

A dog is standing on a hardwood floor.

A **stop** sign is on a road with a mountain in the background

A little **girl** sitting on a bed with a teddy bear.

A group of **people** sitting on a boat in the water.

A giraffe standing in a forest with **trees** in the background.

Geoff Hinton

Running networks in reverse

https://deepdreamgenerator.com/ https://deepdreamgenerator.com/gallery

https://deepdreamgenerator.com/ddream/d024edebe6

https://deepdreamgenerator.com/ddream/e1bc24baea

https://deepdreamgenerator.com/ddream/c7e91a713e

Adversarial inputs

dog

+noise

ostrich

GANs (Generative Adversarial Networks)

https://affinelayer.com/pixsrv/

Memory consolidation experiment

(credit for the following to DeepMind)

Hippocampus sits at the center

of the brain--integrates the

sensory information.

It stores short-term memories

(observed relationships between data)

Sleep consolidation

During sleep, the "training data" from your day's experience is replayed from the Hippocampus to the cortex, many times

They can measure a rat "running a maze" during sleep

The cortex efficiently encodes and stores this information

Sleep consolidation experiment (1)

Try this on your family and friends:

- Print out 7-9 images of simple objects onto paper, cut them out
- Order them (arbitrarily) but don't show your test subject the images or tell them you ordered them

Sleep consolidation experiment (2)

3. In the evening, do a test:

3a. Quiz them with 20 adjacent pairs, "Who wins?" you ask. At first they have no idea what you are talking about. You record right/wrong and tell them the answer. They learn! By pair 10 they should get them all right.

Sleep consolidation experiment (3)

Remember: at this point they don't

know the underlying theme

All they see are pairs of objects and they start to memorize the pattern:

"flower always beats shoe"

"bread always beats airplane"

Sleep consolidation experiment (4)

4. In the same evening session

4a. Quiz them with 10 random pairs. Record their answers, right/wrong. (Probably 50% wrong)

-> "dog, bread... no idea!"

Don't tell them these answers!

Sleep consolidation experiment (5)

5. The next morning:

5a. Quiz them with 10 new random pairs. Record their answers, right/wrong.

Sleep consolidation experiment (6)

If this works correctly:

Not only do they get all the answers correct in the morning...

they insist you showed them those exact pairs last night! The correct answer is that obvious them.

Sleep consolidation experiment (6)

"Of course flower beats house"

The cortex has organized the information efficiently, maybe in a 1-dimension embedding!

See also e.g.

http://psychology.msu.edu/SleepLab/MemoryTest.aspx

Theory of humor

If a brain benefits from organizing information efficiently, what's a good motivation for evolution to encourage it?

What if a small pleasure signal was given when a long series of jumbled information finally made sense with a punch line, allowing the storage to be consolidated?

Or the satisfaction of understanding a complex topic?

TREND 1 - End-to-end learning

- Language translation
- Speech recognition
- Robotics
- ... many more coming

https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Googe Neural Machine Translation

Zero shot learning

- High-level representations allow surprising applications
 - Learn to translate A->B
 - Learn to translate C->D
 - Ask the system to translate A->D

TREND 2 - Data

TREND 3 - The commoditization of algorithms

- Diminishing gains at any one task
 - benchmarks
- TensorFlow for published papers
 - great for humanity
 - maybe not so great for technical entrepreneurs

Trends that might not matter (*)

(*) to an entrepreneur; to an engineer they may be interesting

- MLaaS
 - offers nothing new
- Custom accelerators
 - o quirky
- Fairness in ML
 - \circ no wins
- Privacy
 - bogged down
- Medical
 - too many barriers, slow

- Massive networks
 - aggregation
- Mixture of experts
 - aggregation
- Custom loss functions
 - too incremental
- Parameter tuning
 - too incremental
- Massively sparse
 - maybe