

Electrical Engineering Computer Science

Scaling Machine Learning with Moore's Law

Kunle Olukotun Stanford University

EE and CS

Machine Learning Becoming Dominant

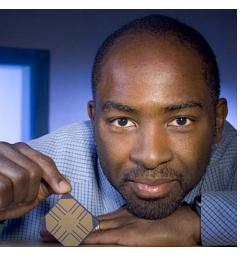
- Recent advances in image recognition, natural language processing, planning, knowledge base construction are driven by machine learning
- Society-scale impact: autonomous vehicles, personalized medicine, personalized recommendations
- Developing high-quality ML applications is challenging
 - Requires deep ML knowledge, custom tools and high-performance computing

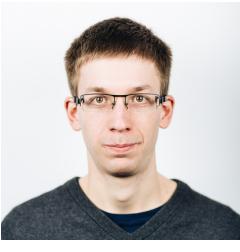
The DAWN (Data Analytics for What's Next) Project

Peter Bailis Streaming & Databases

Chris Ré MacArthur Genius Databases + ML

Kunle Olukotun Father of Multicore Domain Specific Languages





Matei Zaharia Co-Creator of Spark and Mesos

- What if anyone with domain expertise could build their own production-quality ML products?
 - Without a PhD in machine learning
 - Without being an expert in DB + systems
 - Without understanding the latest hardware

Structured Data

Data easy to process by machines

Unstructured Dark Data

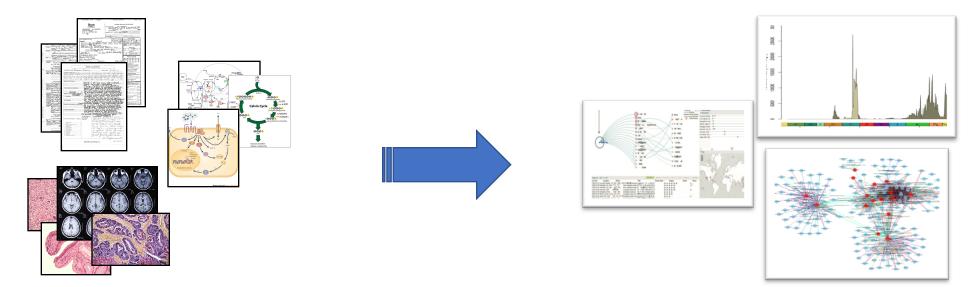
Scientific articles & government reports

SCIENCE

Medical Images

Valuable & hard to process

Dark Data Extraction (DDE)



Dark Data: Text, Tables, Images, Diagrams, etc.

Structured Data: Enables analyses, interfaces, etc.

A critical and difficult step in many data analysis pipelines

d Deep Dive

Dark Data System

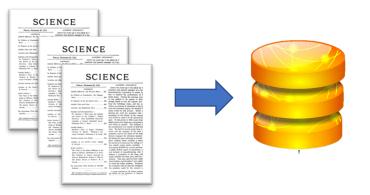
Human-caliber **quality** with machine-caliber **scale**

Extraction from the Scientific Literature

Scientific data accessible, but not *readable*

• What is the impact of human genetic variation on drug responses?

• What drugs may have unsafe reaction with which gut bacteria?



Dark Data Helps with Societal Problems

Anti-human Trafficking

100M sex ads read with human-caliber quality

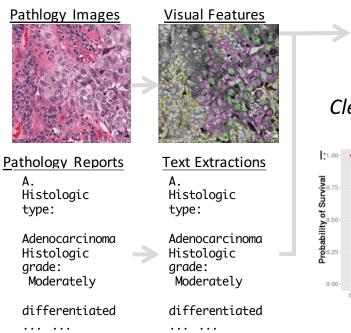
 Child predators & human traffickers arrested in multiple jurisdictions across the US

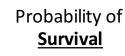
2016 Presidential Award for Extraordinary Efforts to Combat Trafficking in Persons

the WHITE HOUSE PRESIDENT BARACK OBAMA

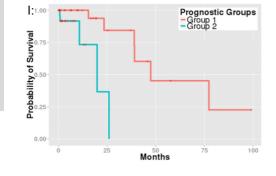
Dark Data Extraction: Beyond Text!

• Example: Tumor grade & stage classification from histopathology slides (Nature Comm., Hsing-Yu et. al.)



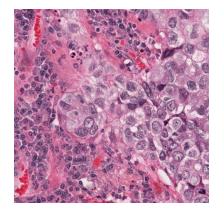


Cleanly separated



Images + patient data **outperform** expert pathologists at prognosis

Dark data can help improve science, business, and society



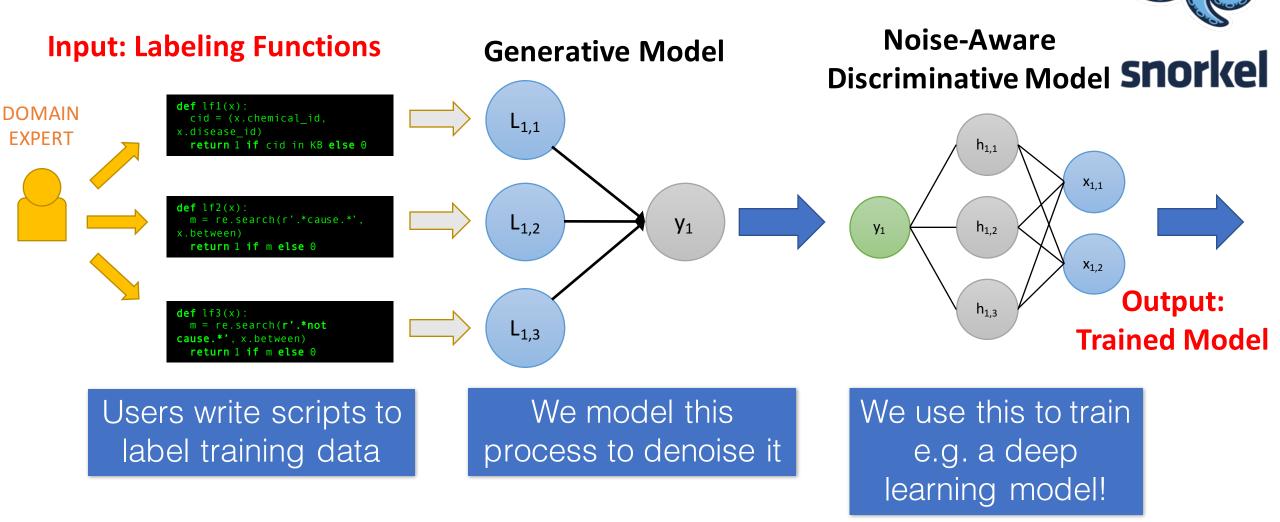
Biodiversity

Drug Response Lung Cancer Prognosis

Fight against human trafficking

http://deepdive.stanford.edu/ http://lattice.io/

Data Programming Pipeline in Snorkel



C.

From EE Times – September 27, 2016

"Today the job of training machine learning models is limited by compute, if we had faster processors we'd run bigger models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements of several orders of magnitude – 100x or greater."

Greg Diamos, Senior Researcher, SVAIL, Baidu

DAWN Goals

Speed up machine learning by 100x

1000x improvement in performance/watt

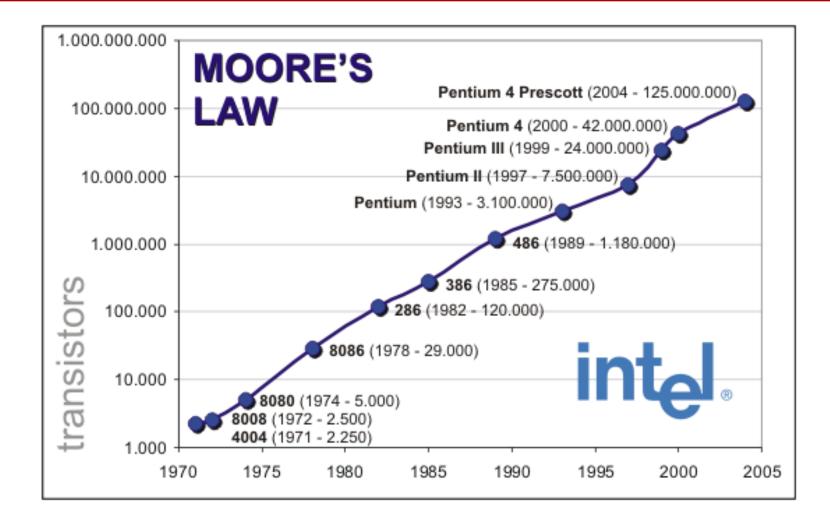
Enable real-time and interactive ML on big data

- Data center
- Mobile

Full stack approach:

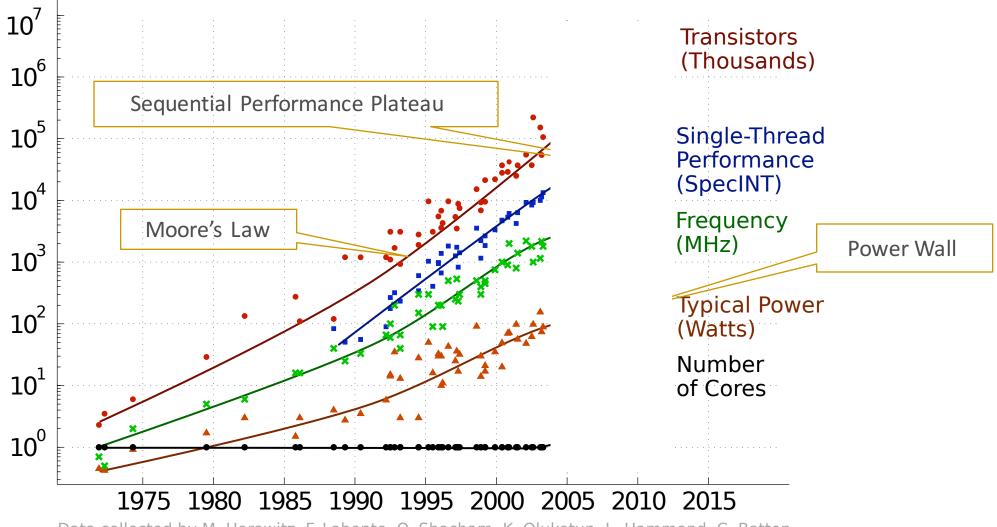
- **1**. Algorithms
- 2. Programming Languages and Compilers
- 3. Hardware

Moore's law: The Good Old Days



More transistors... used to mean faster!

Moore's Law Today \Rightarrow More Cores



Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

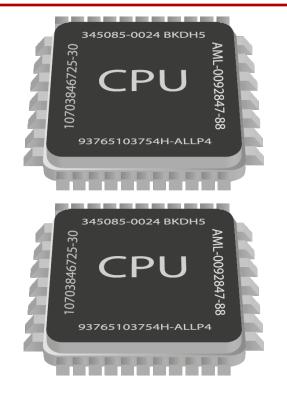
Machine Learning Computational Model

- Underlying model for modern applications
- New computational model
 - Old: Classical deterministic computations with algorithms
 - New: Probabilistic machine-learned models from data
- Statistical correctness creates many opportunities for improved parallel performance

Everything You Learned About Parallel Computing is Wrong for Machine Learning!

A Crash Course in Parallel Computing

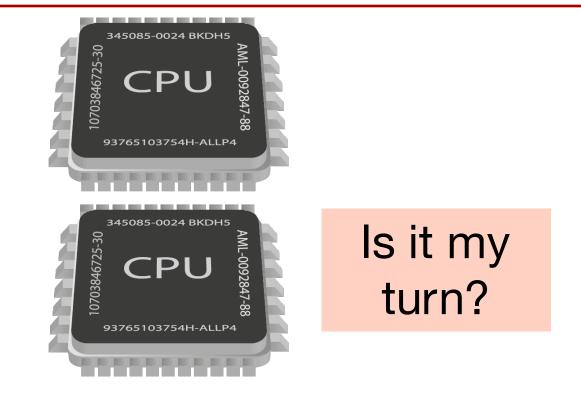
Multicore: No Data Sharing Case



Jobs with little data sharing, 2 cores execute twice as fast!

Multicore: Shared Data Case

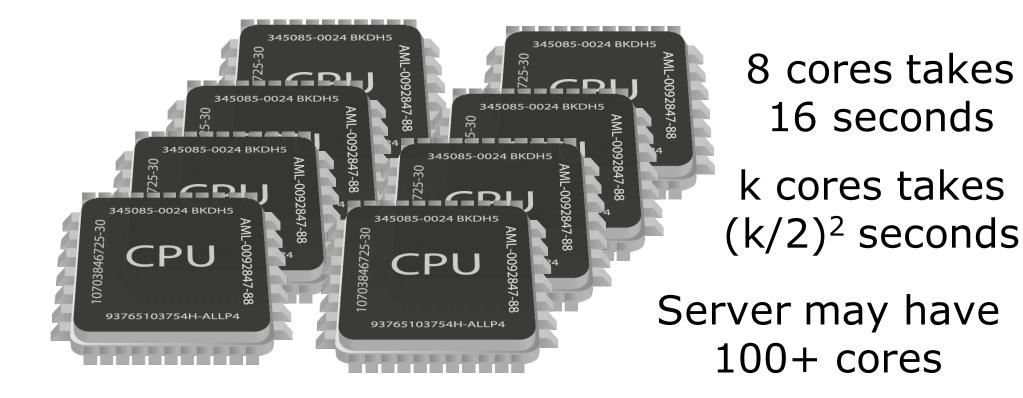
Protocol for "whose turn," called **locking,** takes 100s of CPU clock cycles



Locking Overhead Scales Quadratically

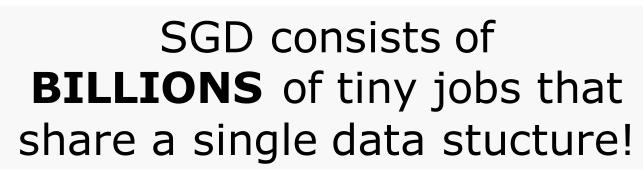
Suppose it takes 1 second to synchronize with 2 cores

4 cores takes 4 seconds



SGD: The Key Algorithm in Machine Learning

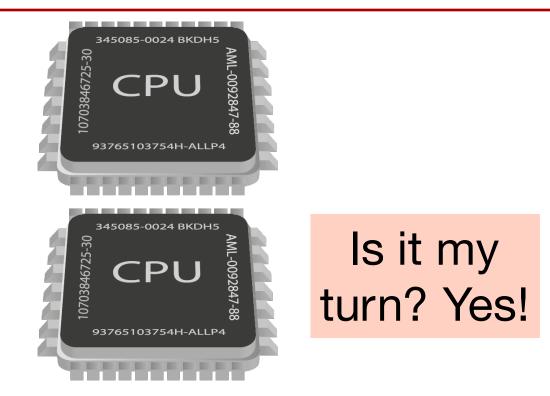
The core algorithm of modern learning is called **Stochastic Gradient Descent** (SGD)



Implemented in a classical way (locking) SGD actually gets *slower* with more cores

So what can we do?

Multicore: Hogwild! Case



Ignore the locks!

How do we run SGD in Parallel?

Just ignore the locking protocol... As we say, go **Hogwild**!

This is computer science **heresy!**

Theorem (roughly, NIPS11): If we do **no locking**, SGD converges to correct answer—at essentially the same rate!

Cortana: Microsoft's Digital Assistant

WIRED

AI breakthrough: Microsoft's 'Project Adam' identifies dog breeds, points to future of machine learning

All web companies have similar: image rec, voice, mobile, search, etc.

"...using a technology called, of all things, **Hogwild!"**

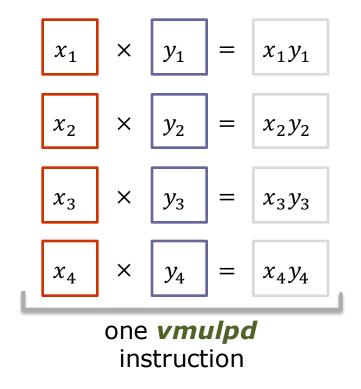
http://www.wired.com/2014/07/microsoft-adam/

http://www.geekwire.com/2014/artificial-intelligence-breakthrough-microsofts-project-adam-identifies-dog-breeds/

Single Instruction Multiple Data (SIMD)

Like vector processing

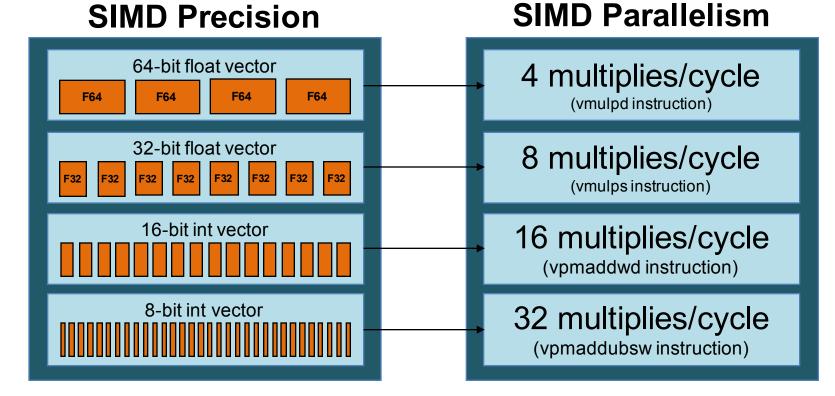
Single instruction can process multiple values at once



Source of parallelism independent of multicore

Low Precision and SIMD Parallelism

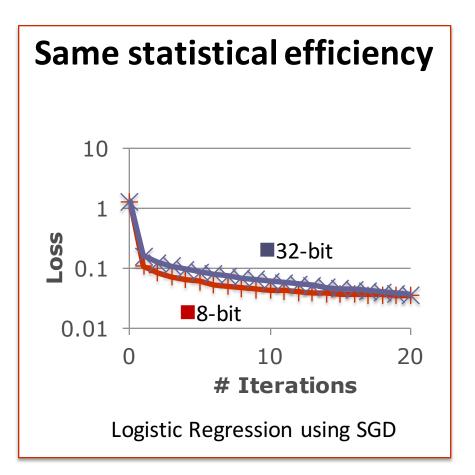
Major benefit of low-precision: use SIMD instructions to get more parallelism on CPU



The Buckwild! Strategy

- Use 8- or 16-bit fixed point numbers for computing SGD rather than 32-bit floating point
 - Fewer bits of data \rightarrow better use of SIMD \rightarrow higher performance
 - Fewer bits of data \rightarrow same convergence behavior with SGD
 - Theory: [De Sa, Zhang, Olukotun, Ré: NIPS 2015]

Buckwild! Statistical vs. Hardware Efficiency

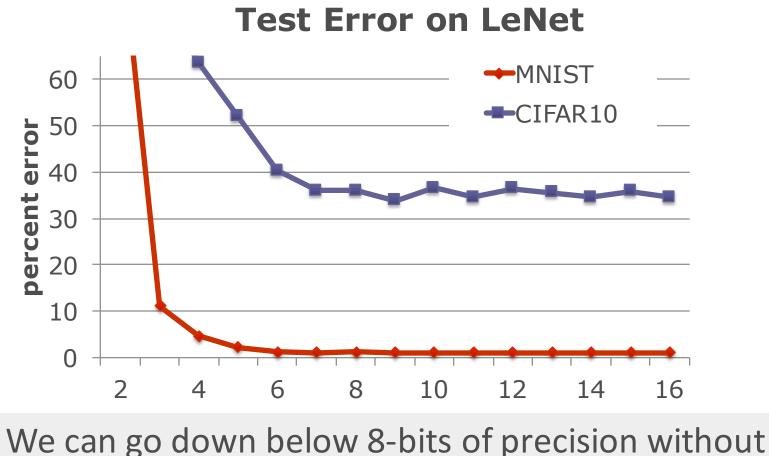


Improved hardware efficiency

- 8-bit gives about 3x speed up!
- Lower precision is possible
- Good match to specialized/reconfigurable HW?

BUCKWILD! has same **statistical efficiency** with greater **hardware efficiency**

Low Precision for Convolutional Neural Network



We can go down below 8-bits of precision withou sacrificing accuracy

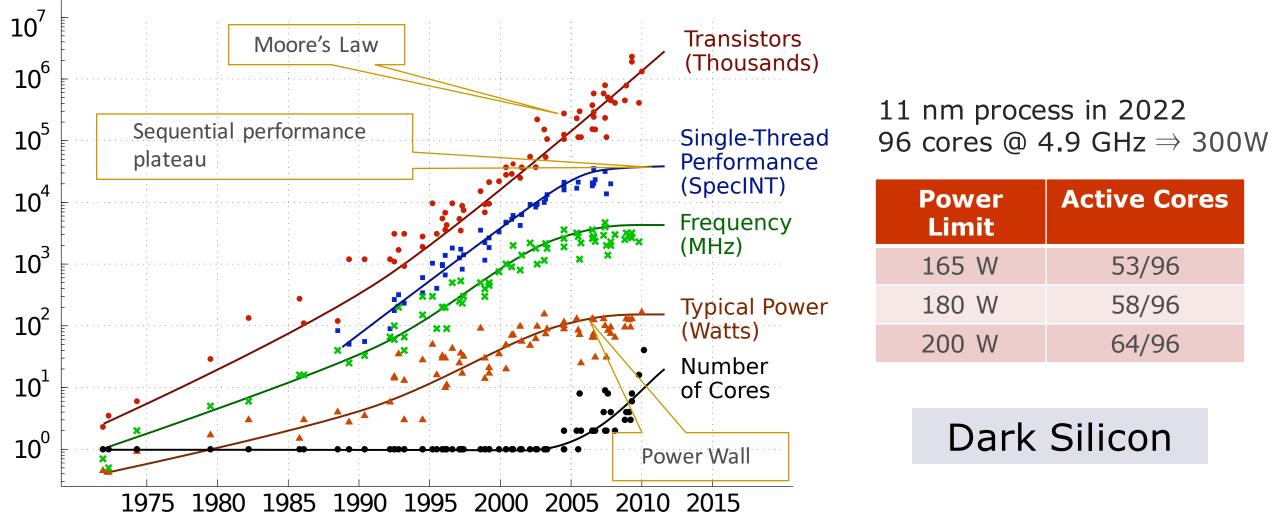
Relax, It's Only Machine Learning

Relax locking: data races are better

- HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]
- Relax precision: small integers are better
 - BuckWild! [De Sa, Zhang, Olukotun, Ré: NIPS 2015]
- Relax cache coherence: incoherence is better
 - [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

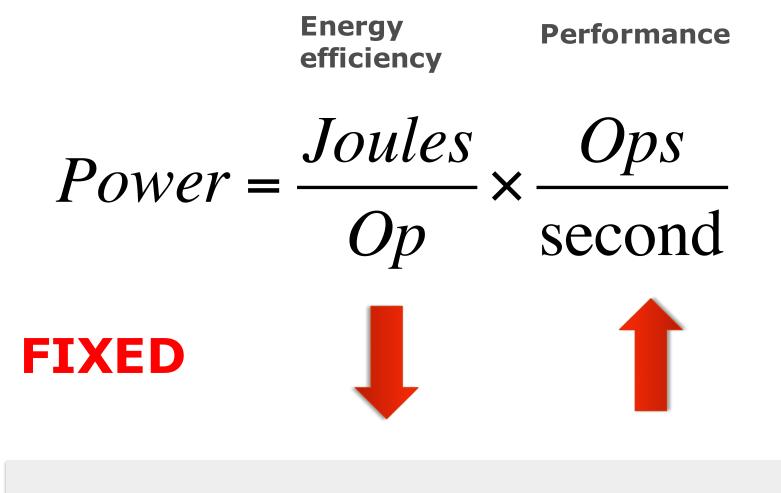
Better hardware efficiency with negligible impact on statistical efficiency

End of Dennard Scaling \Rightarrow End of Multicore



Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

Power and Performance



Specialized accelerators improve energy efficiency

Increasing interest in use of FPGAs as application accelerators in data centers

Key advantage: Performance/Watt

FPGA Problems: Programmability and Design

Verilog and VHDL poor match for software developers

High quality designs, but low productivity

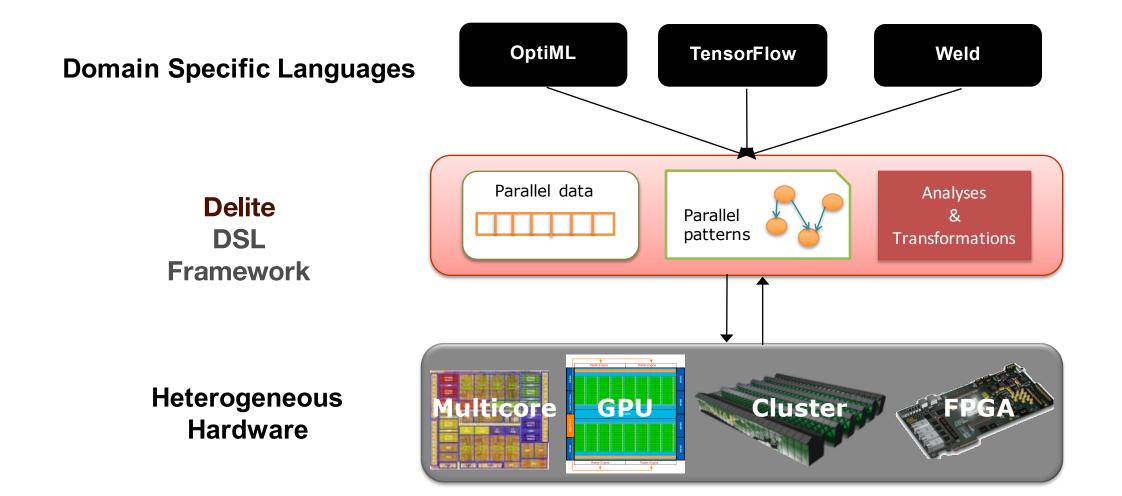
High level synthesis (HLS) tools with C interface

- Medium/low quality designs
- Need hardware knowledge to build good accelerators

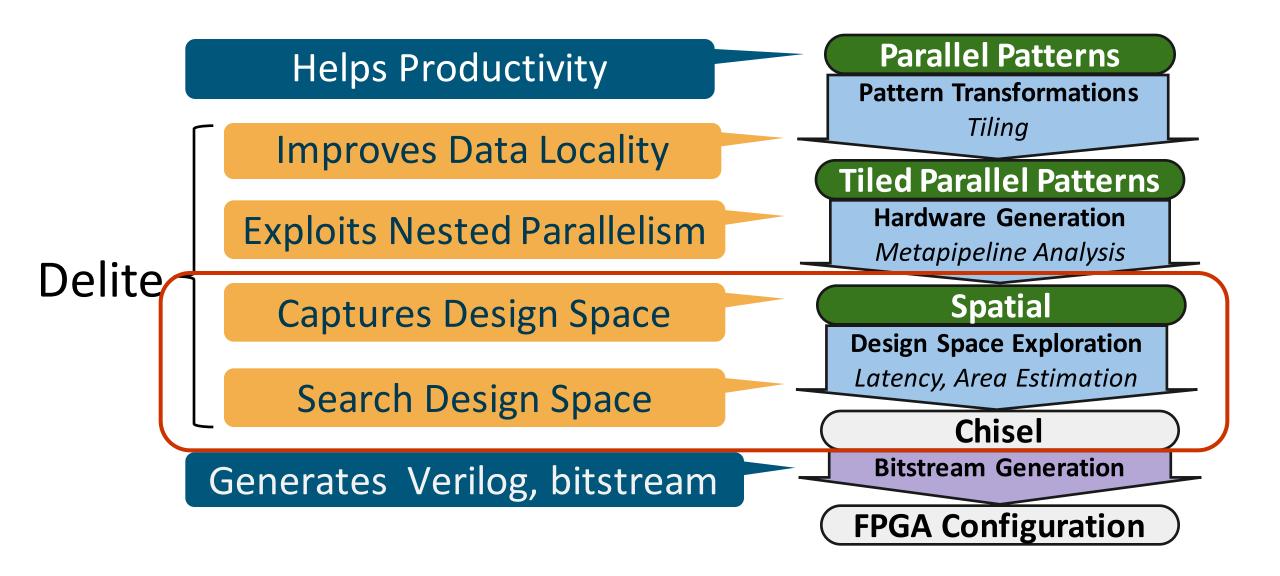
FPGA design space grows exponentially with the number of parameters

- Even relatively small designs can have very large spaces
- Manual exploration is tedious, usually results in suboptimal designs

DSLs, Parallel Patterns and Delite



Parallel Patterns to Hardware



Spatial Performance vs. HLS

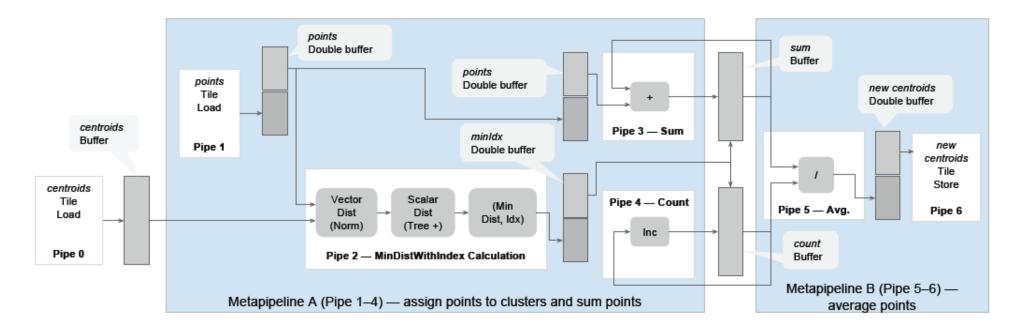
Spatial:

Benchmark	Designs	Search Time
Dot Product	5,426	5.3 ms / design
Outer Product	1,702	30 ms / design
TPCHQ6	6500x Speedup Over HLS!	2 ms / design
Blackscholes		.7 ms / design
Matrix Multiply		.1 ms / design
K-Means	75,200	20 ms / design
GDA	42,800	17 ms / design

Vivado HLS:

	Designs	Search Time
GDA	250	1.85 min / design

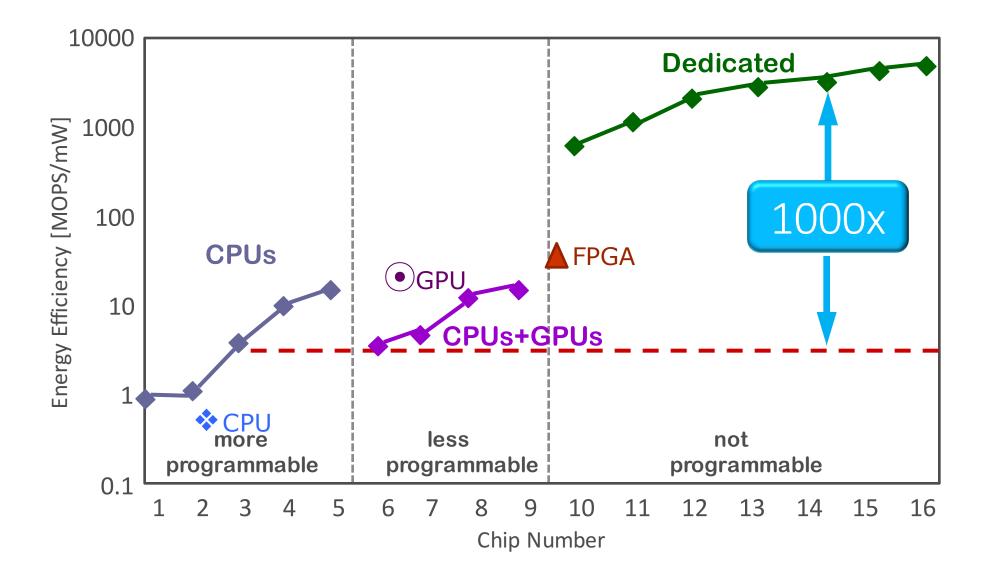
Generated k-means Hardware



High quality hardware design

- Hardware similar to Hussain et al. Adapt. HW & Syst. 2011
 - "FPGA implementation of k-means algorithm for bioinformatics application"
 - Implements a fixed number of clusters and a small input dataset
- Tiling analysis automatically generates buffers and tile load units to handle arbitrarily sized data
- Parallelizes across centroids and vectorizes the point distance calculations

Energy Efficiency vs. Programmability



Specialized ML hardware that provides programmability of CPUs and energy efficiency of ASICs

Software Defined Hardware (SDH)

All(Just) the advantages of conventional accelerators

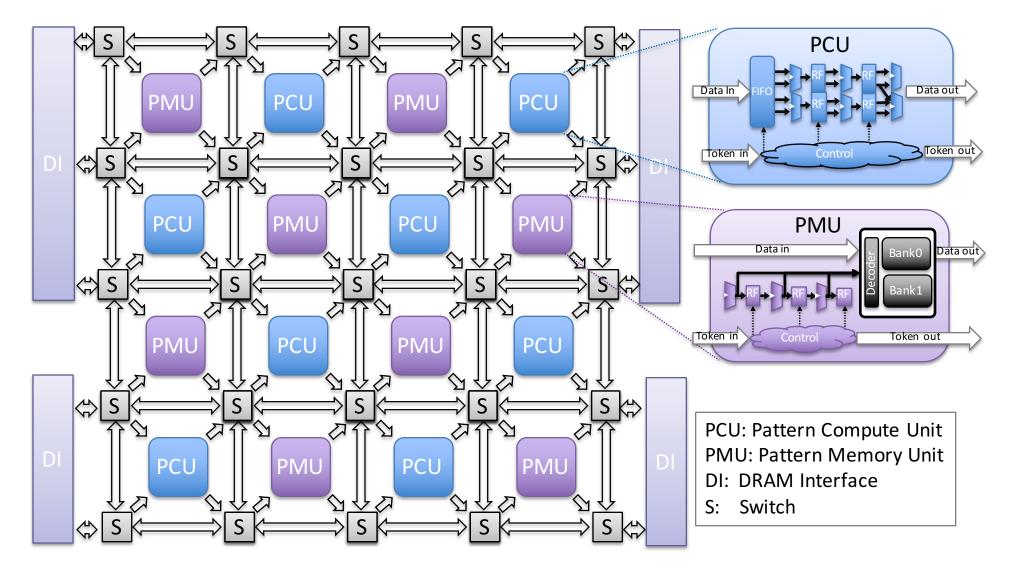
- Flexibility of FPGAs
- Programmability of GPUs
- Efficiency of ASICs

SDH Goals

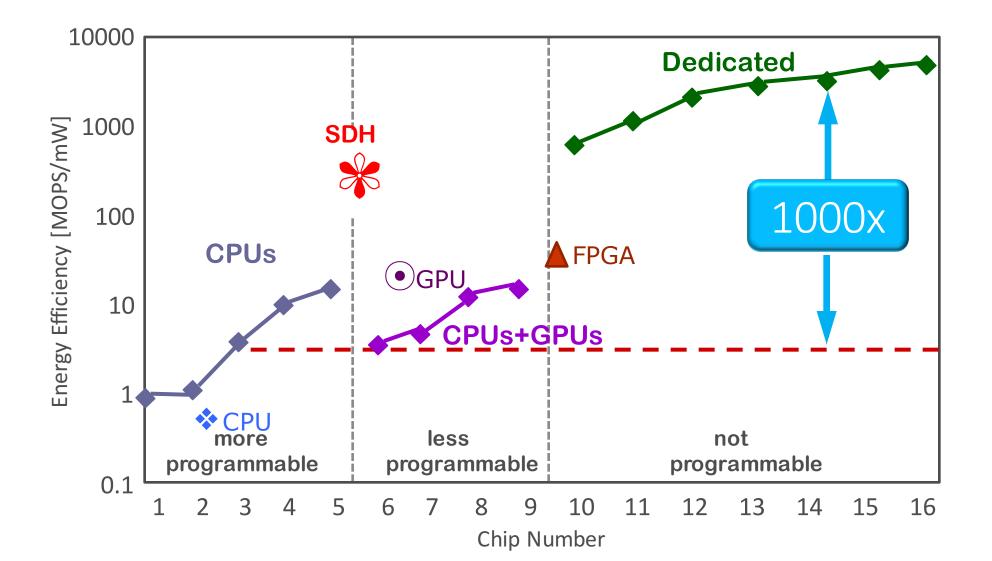
- 100x performance/Watt vs. CPU
- 10x performance/Watt vs. FPGAs/GPUs
- 1000x programmability vs. FPGAs

Plasticine: A SDH Architecture

Plasticine: A Reconfigurable Architecture for Parallel Patterns, ISCA 2017



Software Defined Hardware



We Can Have It All!

Performance

Power

ML Applications (DeepDive, Snorkel) Algorithms (Hogwild!, Buckwild!)

App Developer

High Performance DSLs (Tensorflow, OptiML ...)

Programmability

High Level Compiler (Delite) Accelerators

(GPU, FPGA, SDH)